=========================================================================== =========================================================================== MAIN INPUT DATA FILE : 3D HEAT-DRIVEN CAVITY FLOW PROBLEM IN DIMENSIONAL UNITS COUPLED WITH WALL AND GAS RADIATION =========================================================================== =========================================================================== __________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 ) / _______________/_____ / / /| / / / | / / | / / | _____________ COLD ( Tc ) / / | / HOT (Th)/____________________/ |/ ______ | | / \ | | /| \| | | | | | | | / | | / | | / | | / | \ | / |_______\____________|/ \ \__________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 ) K ^ | J | | / | gravity ( g =9.81 m.s-2) | / | |/ _|_ ---------> I \_/ DESIRED CONFIGURATION : + CASE B from (Soucasse et al. 2012) - Ra = 1.D+06 - Pr = 0.707 - T0 = 300 K - P0 = 101325 Pa - Uniform molar fraction of H2O = 0.02 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ GENERAL LAYOUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ &Version File_Version="VERSION2.0"/ =========================================================================== FLUID PROPERTIES =========================================================================== INCOMPRESSIBLE FLUID FLOW --> Constant Density HEAT DRIVEN FLOW --> Activation of Heat Transfer BOUSSINESQ ASSUMPTION --> Thermal Expansion Coefficient = 1/T0 ( here beta = 0 ==> beta = 1/T0 ) &Fluid_Properties Variable_Density = .false. , Constant_Mass_Flow = .true. , Heat_Transfer_Flow = .true. , Heat_Capacity_Ratio = 1.4 , Reference_Density= 1.225, Reference_Dynamic_Viscosity= 1.852D-05, Reference_Temperature= 300.0 , Prandtl = 0.707, Reference_Heat_Capacity = 1004.D0 , Thermal_Expansion_coefficient = 0.0/ =========================================================================== INITIALIZATION OF THE VELOCITY COMPONENTS, THE TEMPERATURE AND SPECIES =========================================================================== START FROM FLOW AT REST AND UNIFORM TEMPERATURE at T0 = 300 K &Velocity_Initialization I_Velocity_Reference_Value = 0.0 , J_Velocity_Reference_Value = 0.0 , K_Velocity_Reference_Value = 0.0 , Initial_Field_Option_For_Velocity_I = 0, Initial_Field_Option_For_Velocity_J = 0 , Initial_Field_Option_For_Velocity_K = 0/ &Temperature_Initialization Temperature_Reference_Value = 300.0, Initial_Field_Option_For_Temperature = 0 / =========================================================================== GRAVITY =========================================================================== FORCE GRAVITY ALONG THE VERTICAL AXIS POINTING DOWNWARD ( i.e. gravity = -g.\vec{z} ) CONSIDERING DIMENSIONAL PARAMETER g = 9.81 m/s^2 &Gravity Gravity_Enabled= .true. , Gravity_Angle_IJ= 90.0 , Gravity_Angle_IK= 0.0 , Reference_Gravity_Constant= 9.81 / =========================================================================== RADIATION =========================================================================== AS RADIATION IS CONSIDERED : - ACTIVATE THE RADIATIVE SOLVER [default = .false.] ( ONLY FOR 3D CARTESIAN PROBLEMS !! ) - SOLVE THE RADIATIVE PROBLEM EVERY 5 CONVECTIVE TIMESTEP ( LIMIT TIME CONSUMPTION , KEEP THIS PARAMETER LOWER THAN 5~8 FOR STABILITY ... ) [default = 1] - IF STARTED FROM SCRATCH, FORCE THE SOLVER TO ITERATE OVER FirstIterations=200 LOCAL ITERATIONS FOR INCIDENT FLUXES CONVERGENCES AT WALLS AND VOLUMIC RADIATIVE SOURCE TERM [default = 20] - FOR EACH RADIATIVE PROBLEM SOLVING STEPS, ITERATE OVER RadiativeLocalIterations=20 SUB-ITERATIONS OR UNTIL RadiativeConvergenceTolerance=5.E-05 RESIDUAL ERROR IS REACHED [default = 1.E-15] - WallRadCoeff AND VolRadCoeff ARE FOR DEVELOPPEMENT ONLY ... [default = 1] - CONSIDER THE "LATHROP" SCHEME TO INTERPOLATE THE CELL-FACES RADIATIVE INTENSITY [default = STEP] - CONSIDER THE ANGULAR DISCRETISATION WITH S10 LEVEL SYMMETRIC QUADRATURES SQuad = 10 ( 120 DIRECTIONS IN VOLUMES, 60 DIRECTIONS ON WALLS) [default = 8] - CONSIDER BLACK WALLS ON DIRICHLET WALLS AND REFLECTIVE WALLS ON THE OTHERS [default = 0.1] - CONSIDER THE MEDIUM AS A REAL GAS MIXTURE : + ACTIVATE THE SLW MODEL ActivateGas=.true. [default = .false.] + SPLIT THE ABSOPTION COEFFICIENT DOMAIN IN 8 WEIGHTED SUM OF GRAY-GASES NbGas = 8 [default = 1] + ka_min AND ka_max REPRESENTS THE MININUM AND MAXIMUM RANGE OF THE ABSORPTION COEFFICIENT DOMAIN in m^{-1} [default = 0] + CONSIDERS THE MEDIUM AS AN AIR-H2O GAS MIXTURE WITH UNIFORM MOLAR FRACTION x = 0.02 [default = 0.07] &Radiative_Heat_Transfer_DOM activateRadiation=.true. , RadiativePeriod = 5, FirstIterations=200, RadiativeLocalIterations=20, RadiativeConvergenceTolerance = 5.E-05, WallRadcoeff = 1.0 , VolRadCoeff = 1.0, RadiativeScheme = "LATHROP", ActivateGas=.true., NbGas = 8, ka_max=570., ka_min=6.3e-07, Pref=101325.0, Href = 1.0, speca='H2O',xaref=0.02, xaUniform=0.02, SQuad = 10, WallEmissivity = 1.0 1.0 0.0 0.0 0.0 0.0 / =========================================================================== DOMAIN FEATURES =========================================================================== - CONSIDER HERE A CUBICAL CAVITY WITH WALL REFINED CELLS GIVEN IN SEPARATE MESH FILES - WE CONSIDERS AN MPI DOMAIN DECOMPOSITION PROBLEM ON 2x2x3 MPI PROCESSES &Domain_Features Start_Coordinate_I_Direction= 0.00 , End_Coordinate_I_Direction= 1.00, Start_Coordinate_J_Direction= 0.00 , End_Coordinate_J_Direction= 1.00, Start_Coordinate_K_Direction= 0.00 , End_Coordinate_K_Direction= 1.00, Cells_Number_I_Direction= 40 ,Cells_Number_J_Direction= 40 ,Cells_Number_K_Direction= 30, Number_OMP_Threads= 1, MPI_Cartesian_Topology= .true. , Total_Number_MPI_Processes= 12, Max_Number_MPI_Proc_I_Direction= 2 , Max_Number_MPI_Proc_J_Direction= 2, Max_Number_MPI_Proc_K_Direction= 3, Regular_Mesh= .false. / ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DEFINITION OF BOUNDARY CONDITIONS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ============================================================================= WALL BOUNDARY CONDITION SETUP ============================================================================= - WE CONSIDER DIRICHLET TEMPERATURE CONDITION ON HOT AND COLD WALLS (Heat_BC_Option = 0) - AND WALL CONVECTION-RADIATION COUPLING AT THE OTHER WALLS (Heat_BC_Option = 5) &Heat_Wall_Boundary_Condition_Setup Wall_BC_DataSetName ="Set1", West_Heat_BC_Option = 0 , East_Heat_BC_Option = 0 , Back_Heat_BC_Option = 5 , Front_Heat_BC_Option = 5 , South_Heat_BC_Option = 5 , North_Heat_BC_Option = 5, West_Wall_BC_Value= 300.005 , East_Wall_BC_Value= 299.995 , Back_Wall_BC_Value= 0.0 , Front_Wall_BC_Value= 0.0 , South_Wall_BC_Value= 0.0 , North_Wall_BC_Value= 0.0 / ============================================================================= BORDER BOUNDARY CONDITIONS ============================================================================= !--- No new boundary conditions are defined at the ends of the domain : walls by default are preserved, the inlet and outlet previously are defined above) !--- As "None" is the default setting for this namelist, it can be removed &Border_Domain_Boundary_Conditions West_BC_Name= "None" , East_BC_Name= "None" , Back_BC_Name= "None" , Front_BC_Name= "None" , North_BC_Name= "None" , South_BC_Name= "None" / ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ NUMERICAL METHODS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ PARTIAL DIAGONALISATION TECHNIQUE IS EMPLOYED FOR THE POISSON PROBLEM ==> Numerical_Method_Poisson_Equation = 3 &Numerical_Methods NS_NumericalMethod= "BDF2-SchemeO2" , !--- BDF2 + 2nd order centered scheme MomentumConvection_Scheme="Centered-O2-Conservative" , !--- conservative form for solving the velocity (momentum) equation TemperatureAdvection_Scheme="Centered-O2-Conservative", !--- conservative form for solving the temperature (enthalpy) equation Poisson_NumericalMethod="Home-PartialDiagonalization" / !--- Partial Diagonalization for Poisson's equation ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SIMULATION MANAGEMENT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - START FROM SCRATCH IF Restart_Parameter= 0 OR FROM EXISTING FILES IF Restart_Parameter= 3 - WE CONSIDERS THAT THE PROBLEM WILL REACH A STEADY STATE AND WILL EVOLVE IN TIME WITH FIXED CFL PARAMETER &Simulation_Management Restart_Parameter= 3 , Steady_Flow_Stopping_Criterion_Enabled = .true. , Steady_Flow_Stopping_Criterion = 1.D-14, Temporal_Iterations_Number = 100 , Final_Time = 3.D+04 , TimeStep_Type = 1 , CFL_Min = 0.3 , CFL_Max = 0.3 , Timestep_Min = 1.D-03 , Timestep_Max = 1.D+01 , Iterations_For_Timestep_Linear_Progress= 1, Probe_Recording_Rate = 1000 , Simulation_Backup_Rate = 5000 , Simulation_Checking_Rate = 20 / ============================================================================= PROBES MANAGEMENT ============================================================================= ============================================================================= FIELDS RECORDING SETUP ============================================================================= &Field_Recording_Setup Check_Special_Features= "NOHeat_Driven_Cavity_Flow" / &Simulation_Management InstantaneousFields_RecordingReset=.false. , InstantaneousFields_TimeRecordingRate= 5.0E+01 , InstantaneousFields_RecordingStartTime= 0.D-00 / &Instantaneous_Fields_Listing Name_of_Field = "U " / First velocity component &Instantaneous_Fields_Listing Name_of_Field = "V " / Second velocity component &Instantaneous_Fields_Listing Name_of_Field = "W " / Third velocity component &Instantaneous_Fields_Listing Name_of_Field = "T " / Temperature &Instantaneous_Fields_Listing Name_of_Field = "P " / Pressure &Instantaneous_Fields_Listing Name_of_Field = "divU " / Momentum divergence END OF FILE