===== Namelist "Radiative_Heat_Transfer_DOM" ===== __** Not for the release SUNFLUIDH_EDU**__ .\\ This data set is used to define the radiative problem. Otherwise, it can be omitted.\\ This module considers the Radiative Transfer Equation (RTE) for an emitting-absorbing non-scattering medium enclosed by diffuse boundaries. To take into account the gas behavior, it considers both gray-gas assumption as well as real gas behavior through the Spectral-Line-Weighted-Sum-of-Gray-Gases (SLW) model. \\ The final RTE-SLW problem is then discretize with the Discrete Ordinates Method (DOM). **The DOM** discretize the $4\pi$ steradians integration in a set of $M$ discrete directions represented by their direct cosines and corresponding weights $\vec{q_m} = (\vec{s_m},\omega_m) = (\mu_m,\eta_m,\xi_m,\omega_m)$ for all $m \in [1,M]$.\\ **The SLW model** will change the spectral integration in a weighted sum of $N_g$ gray-gases represented by their absorption coefficient and corresponding weights $(\kappa_j,a_j)$ for all $j \in [1,N_g]$. Thus, the resulting **RTE-SLW-DOM** problem for emitting-absorbing non-scattering medium stands as below : \begin{equation} \vec{s}_m \cdot \nabla I_j^m (x_i,\vec{s}_m) = \kappa_j \left[ a_j I_b({T}(x_i)) - I_j^m(x_i,\vec{s}_m) \right]; \quad \forall (m,j) \in [M,N_g] \end{equation} where $I_j^m$ is the radiative intensity for the virtual gray-gas $j$ in direction $m$ and $I_b$ is the blackbody radiative intensity. The **dimensional** radiative source term $S_r$ and boundary net radiative heat flux $q_r^{net}$ are defined as : \begin{eqnarray} S_r(x_i,{T}) & = & - \sum_{j=0}^{N_g} \kappa_j \left[ \sum_{m=1}^{M} \omega_m I_j^m (x_i,\vec{s}_m) - 4 a_j \sigma_B ({T}(x_i))^4 \right] \\ {q}_r^{net}(x_i^{wall}) & = & \varepsilon_{wall} \left[ \sigma_B ({T}(x_i^{wall}))^4 - \sum_{j=0}^{N_g} \sum_{m:\vec{s}_m \cdot \vec{n} > 0} \omega_m |\vec{s}_m\cdot \vec{n}| I_j^m (x_i^{wall},\vec{s}_m) \right] \end{eqnarray} where $\sigma_b$ is the Stefan-Boltzmann constant, $\varepsilon$ is the boundary emissivity and $\vec{n}$ is the normal to the wall pointing out of the domain. This radiative solver implementation considers only **cartesian** problems and **does not support immersed bodies**. ===== Full data set of the namelist ===== &Radiative_Heat_Transfer_DOM activateRadiation = .false., RadiativePeriod = 1, FirstIterations = 20, RadiativeLocalIterations = 1, RadiativeConvergenceTolerance = 1.E-15, WallRadcoeff = 1.0 , VolRadCoeff = 1.0, RadiativeScheme = "STEP", ActivateGas = .false., NbGas = 1, ka_max = 0.0, ka_min = 0.0, Pref = 101325.0, Tref = 300., Href = 1, speca = "H2O", xaref = 0.07, xaUniform = 0.07, SQuad = 8, WallEmissivity = 0.0 0.0 0.0 0.0 0.0 0.0 / ----- ===== Definition of the data set for the DOM-RTE problem ===== ----- ==== activateRadiation ==== * Type : Boolean value * This option activates the radiative module. * .false. : no radiation considered * .true. : radiation problem is considered * Default value = .false. ==== RadiativePeriod ==== * Type : Integer value * This option set the periodicity of resolution of the Radiative problem in time iteration. * Default value = 1 ==== FirstIterations ==== * Type : Integer value * In the case that no restart fields are available (start radiation from scratch), the solver will iterates "FirstIterations" times before entering the time loop. * Default value = 20 ==== RadiativeLocalIterations ==== * Type : Integer value * Number of sub-iteration for the RTE solving at each radiative iteration. * Default value = 1 ==== RadiativeConvergenceTolerance ==== * Type : Real value * Convergence criteria on the wall Fluxes and radiative source term for the sub-iteration. * Default value = 1.E-15 ==== WallRadcoeff ==== * Type : Real value * Prescaler on the net radiative heat flux $q_r^{net}$ at walls. * **For debugging only**. * Default value = 1.0 ==== VolRadcoeff ==== * Type : Real value * Prescaler on the radiative source term $S_r$. * **For debugging only**. * Default value = 1.0 ==== RadiativeScheme ==== * Type : Character string with a maximum size of 20 * Name of the interpolation scheme used in the Discrete Ordinates Method. * Available values : * "STEP" : first order interpolation scheme (robust) * "DIAMOND" : second order centered interpolation scheme (could lead to negative intensity) * "LATHROP" : second order interpolation scheme with limiter (time-consuming) * Default value = "STEP" ==== SQuad ==== * Type : Integer value. * Order N of the level symmetric angular quadrature ($S_N$) * This quadrature leads to $M = (N+2)\times N$ directions in volume and half at boundaries * Available values are 2, 4, 6, 8, 10, 12, 14 * Default value = 8 ==== Tref ==== * Type : Real value. * Reference temperature $T_{ref}$ in [$K$]. * Default value = Fluid_Properties%Reference_Temperature ==== Href ==== * Type : Real value. * Reference Length $H_{ref}$ in [$m$]. * Default value = Nondimensionalization%Reference_Length ==== WallEmissivity ==== * Type : Real array of size 6. * Boundaries emissivities $\varepsilon$ sorted as (x-,x+,y-,y+,z-,z+). * Default values = 0.0 0.0 0.0 0.0 0.0 0.0 ===== Definition of the data set for the SLW model ===== ----- ==== activateGas ==== * Type : Boolean value * This option activates the SLW module. * .false. : **transparent medium** under gray-gas assumption is considered (i.e. $\kappa = 0$) * .true. : Gas absorption and emission is considered * Default value = .false. **if activateGas == .false.**, the settings below are unnecessary. ==== NbGas ==== * Type : Integer value * This option sets the number of weighted gray-gases $N_g$ used in the SLW model. * NbGas $=$ 1 : gray-gas assumption with $\kappa$ = //ka_min// * NbGas $\ge$ 2 : SLW model is employed * Default value = 1 Setting **NbGas $=$ 1 and ka_min = 0** is equivalent to **wall-to-wall radiation** du to the presence of transparent medium ==== ka_min , ka_max ==== * Type : Real values * These options set the lower and upper bounds of dimensional absorbing coefficient [$m^{-1}$] for the SLW model. * if NbGas $=$ 1 : $\kappa$ = //ka_min//, **//ka_max// is useless** * if NbGas $\ge$ 2 : //ka_min// < $\kappa_j$ < //ka_max// for all $j \in [1,N_g]$ * Default value = [ ka_min , ka_max ] = [ 0.0 , 0.0 ] ==== SPECA ==== * Type : Character string with a maximum size of 3 * Name of the absorbing species when NbGas $\ge$ 2 (SLW model). * **if "NbGas" $=$ 1 : useless** * Available values : * "H2O" : $air-H_2O$ mixture * "CO2" : $air-CO_2$ mixture * Default value = "H2O" ==== xaref ==== * Type : Real value * This option set the reference molar fraction $x_{ref}$ of the absorbing species for the SLW model. * **if "NbGas" $=$ 1 : useless** * Default value = 0.07 ==== xaUniform ==== * Type : Real value * As long as the SLW model is not coupled with species equations, this option set a uniform molar fraction $x_{a}$ of the absorbing species in the overall domain. * **if NbGas $=$ 1 : useless** * Default value = 0.07 ==== Pref ==== * Type : Real value. * Reference pressure $P_{ref}$ in [$Pa$]. * **if "NbGas" $=$ 1 : useless** * Default value = obtained from Fluid_Properties quantities