Outils pour utilisateurs

Outils du site


sunfluidh:fluid_properties_examples

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
sunfluidh:fluid_properties_examples [2016/11/18 10:23] – [Flows with heat transfer (multi-species gas , physical properties depend on the gas components] yannsunfluidh:fluid_properties_examples [2016/11/29 14:58] (Version actuelle) yann
Ligne 1: Ligne 1:
-==== Examples of data set related to the namelist "Fluid_Properties"====+===== Examples of data set  =====
  
-The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ +The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. \\ 
-Data values are showed for equations used in dimensional form.\\+The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ 
 +Data values are showed for equations used in dimensional form.\\
  
-==== Monophasic incompressible Flows with constant physical properties ====+----- 
 +==== Usual incompressible Flows ====
  
-=== Without heat transfer ===+----- 
 +<WRAP info> 
 +One fluid is considered.\\ 
 +In these examples, the physical properties are constant but the viscosity or the thermal conductivity can depend on temperature (Sutherland's law).\\ 
 +The heat capacity of the fluid is considered constant(no temperature dependence).\\ 
 +The gravity or buoyancy effects are related to the temperature variation only.\\ 
 +</WRAP> 
 +=== Isothermal flows ===
  
    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,
                       Reference_Density           = 1.2058789  /                       Reference_Density           = 1.2058789  /
  
 +=== Example of axisymmetrical flows ===
 +
 +  &Fluid_Properties  Axisymmetric_Case_3D_Enabled= .true. ,
 +                     Reference_Dynamic_Viscosity = 1.84D-05 ,
 +                     Reference_Density           = 1.20    /
 +
 +<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] .</note>
  
-=== With heat transfer and buoyancy force === 
  
-  &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,+=== Flows with Boussinesq's hypothesis === 
 +<note> 
 +Here Heat transfer are considered.\\ 
 +The physical properties are constant.\\ 
 +The buoyancy effect are related to the temperature variation.\\ 
 +</note> 
 +  &Fluid_Properties  Heat_Transfer_Flow          = .true. , 
 +                     Reference_Dynamic_Viscosity = 1.84D-05 ,
                      Prandtl                     = 0.71 ,                      Prandtl                     = 0.71 ,
                      Reference_Temperature       = 300.0    ,                      Reference_Temperature       = 300.0    ,
Ligne 21: Ligne 43:
                      Reference_Heat_Capacity = 1004.50  /                      Reference_Heat_Capacity = 1004.50  /
                                            
-<note important>For incompressible flows with buoyancy force, do not forget to define the "Thermal_Expansion_Coefficient" because the buoyancy force is defined from the temperature variation in place of the density.\\+<note important>For incompressible flows with buoyancy effects, do not forget to define the "Thermal_Expansion_Coefficient" because the buoyancy force is defined from the temperature variation in place of the density.\\ 
 +Don not forget also to define the gravity constant in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].
 Thermal_Expansion_Coefficient= 0.0 involves that it is automatically calculated as the inverse of the "Reference_Temperature".\\ Thermal_Expansion_Coefficient= 0.0 involves that it is automatically calculated as the inverse of the "Reference_Temperature".\\
 The "Reference_Heat_Capacity" is only useful when the simulation must explicitly take into account the heat flux (i.e. a heat flux boundary condition or heat exchange between the fluid and a thermal conductive material).  The "Reference_Heat_Capacity" is only useful when the simulation must explicitly take into account the heat flux (i.e. a heat flux boundary condition or heat exchange between the fluid and a thermal conductive material). 
 In these cases, the equation of enthalpy is globally considered and not its simplified version that leads to the equation of temperature.</note> In these cases, the equation of enthalpy is globally considered and not its simplified version that leads to the equation of temperature.</note>
  
-=== Example of Axisymmetric flows === +----- 
- +==== Incompressible two phase flows  ==== 
-  &Fluid_Properties  Axisymmetric_Case_3D_Enabled.true. , +----- 
-                     Reference_Dynamic_Viscosity = 1.84D-05 , +<WRAP info> 
-                     Prandtl                     = 0.71 , +No heat transfer is considered at present.\\ 
-                     Reference_Temperature       = 300.0    , +The physical properties of each fluid are constant.\\ 
-                     Reference_Density           = 1.20    , +Two-phase flow simulations are performed with a level approach.\\ 
-                     Thermal_Expansion_Coefficient= 0.033 +The simulations are restricted to enclosed domains at present.\\ 
-                     Reference_Heat_Capacity = 1004.50  / +</WRAP>
- +
-<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] ).</note> +
- +
-==== Incompressible two phase flows without heat transfer (physical properties of each fluid is constant) ==== +
   &Fluid_Properties  Incomp_MultiFluids= .true. ,   &Fluid_Properties  Incomp_MultiFluids= .true. ,
                      Reference_Dynamic_Viscosity   = 1.84D-05 ,                      Reference_Dynamic_Viscosity   = 1.84D-05 ,
Ligne 45: Ligne 63:
                      Reference_Density             = 1.2      ,                      Reference_Density             = 1.2      ,
                      Reference_Density_2           = 1000.    ,                      Reference_Density_2           = 1000.    ,
-                     Interface_Thickness_Scale     = 1.e-2    ,  +                     Interface_Thickness_Scale     = 1.e-2    /
-                     Incomp_MultiFluids/+
 <note important>                      <note important>                     
 "Interface_Thickness_Scale" is a parameter of the level set model and it is strongly dependent of the simulation (nature of the problem, meshsize, ...). If the variable is set to zero, the interface thickness is automatically estimated. Used with caution.</note> "Interface_Thickness_Scale" is a parameter of the level set model and it is strongly dependent of the simulation (nature of the problem, meshsize, ...). If the variable is set to zero, the interface thickness is automatically estimated. Used with caution.</note>
 +-----
 +==== Low Mach-number Flows ====
 +-----
 +<WRAP info>
 +The fluid is a perfect gas.\\
 +Heat transfer and multi-component gas can be considered.\\
 +Physical properties can be considered constant or dependent of gas mixture and temperature.\\
 +The dependence of the heat capacity is considered only in the case of multi-component gas flows. Otherwise it is constant.\\
 +</WRAP>
  
-==== Low Mach-number Flows (perfect gas only) ==== +===  Example of flow with heat transfer === 
- +<note> 
-=== Flows with heat transfer (one species only, viscosity depends on the Sutherland's law) === +One species only (or homogenous species gas). \\  
 +The viscosity and the thermal conductivity depend on the Sutherland's law.\\ 
 +When the buoyancy/gravity force is considered, it is directly related to the density variation. 
 +</note>
   &Fluid_Properties  Variable_Density             = .true.   ,   &Fluid_Properties  Variable_Density             = .true.   ,
 +                     Heat_Transfer_Flow           = .true. ,
                      Reference_Dynamic_Viscosity  = 1.84D-05 ,                      Reference_Dynamic_Viscosity  = 1.84D-05 ,
                      Reference_Temperature        = 300.0    ,                      Reference_Temperature        = 300.0    ,
Ligne 65: Ligne 94:
                                            
 <note tip> <note tip>
-The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$) and the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas . \\+The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$)the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas. \\
 In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\ In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\
-If gravity/buoyancy effects must be considered, they are directly bounded to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>+If gravity/buoyancy effects must be considered, they are directly connected to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>
                                            
-==== Flows with heat transfer (multi-species gas , physical properties depend on the gas components ==== +=== Multi-species flows === 
 +<note> 
 +Heat transfer is activated.\\ 
 +Multi-species component gas .\\ 
 +Physical properties depend on the gas components.\\ 
 +When the buoyancy/gravity force is considered, it is directly related to the density variation. 
 +</note>
    &Fluid_Properties Variable_Density             = .true.   ,    &Fluid_Properties Variable_Density             = .true.   ,
 +                     Heat_Transfer_Flow           = .true. ,
                      MultiSpecies_Flow            = .true.   ,                      MultiSpecies_Flow            = .true.   ,
                      Reference_Dynamic_Viscosity  = 1.84D-05 ,                      Reference_Dynamic_Viscosity  = 1.84D-05 ,
Ligne 78: Ligne 113:
                      Prandtl                      = 0.71     ,                      Prandtl                      = 0.71     ,
                      Heat_Capacity_Ratio          = 1.4      ,                      Heat_Capacity_Ratio          = 1.4      ,
-                     Thermal_Expansion_Coefficient= 0.0      , 
                      Molecular_Mass               = 2.9D-02  ,                      Molecular_Mass               = 2.9D-02  ,
                      Reference_Heat_Capacity      = 1004.50  ,                      Reference_Heat_Capacity      = 1004.50  ,
Ligne 88: Ligne 122:
                                            
                                            
-<note important>The reference values must be compatible each others (bounded by the law of perfect gas).\\  +<note important>The reference values must be compatible each others (by means of law of perfect gas).\\  
-In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formualtions coming from the kinetic theory of gas.\\ +In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formulations coming from the kinetic theory of gas.\\ 
-The gas properties bounded to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>+The gas properties associated to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>
sunfluidh/fluid_properties_examples.1479461003.txt.gz · Dernière modification : 2016/11/18 10:23 de yann

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki