Outils pour utilisateurs

Outils du site


sunfluidh:fluid_properties_examples

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
sunfluidh:fluid_properties_examples [2016/11/18 10:55] yannsunfluidh:fluid_properties_examples [2016/11/29 14:58] (Version actuelle) yann
Ligne 1: Ligne 1:
-==== Examples of data set related to the namelist "Fluid_Properties"====+===== Examples of data set  =====
  
-The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ +The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. \\ 
-Data values are showed for equations used in dimensional form.\\+The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ 
 +Data values are showed for equations used in dimensional form.\\
  
 ----- -----
Ligne 8: Ligne 9:
  
 ----- -----
- +<WRAP info>
-Here, the physical properties are constant.\\+
 One fluid is considered.\\ One fluid is considered.\\
- +In these examples, the physical properties are constant but the viscosity or the thermal conductivity can depend on temperature (Sutherland's law).\\ 
-=== Isotherm flows ===+The heat capacity of the fluid is considered constant(no temperature dependence).\\ 
 +The gravity or buoyancy effects are related to the temperature variation only.\\ 
 +</WRAP> 
 +=== Isothermal flows ===
  
    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,
                       Reference_Density           = 1.2058789  /                       Reference_Density           = 1.2058789  /
  
-=== Example of isothermal and axisymmetrical flows ===+=== Example of axisymmetrical flows ===
  
   &Fluid_Properties  Axisymmetric_Case_3D_Enabled= .true. ,   &Fluid_Properties  Axisymmetric_Case_3D_Enabled= .true. ,
Ligne 23: Ligne 26:
                      Reference_Density           = 1.20    /                      Reference_Density           = 1.20    /
  
-<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] ).</note>+<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] .</note>
  
  
 === Flows with Boussinesq's hypothesis === === Flows with Boussinesq's hypothesis ===
 +<note>
 Here Heat transfer are considered.\\ Here Heat transfer are considered.\\
 The physical properties are constant.\\ The physical properties are constant.\\
 The buoyancy effect are related to the temperature variation.\\ The buoyancy effect are related to the temperature variation.\\
 +</note>
   &Fluid_Properties  Heat_Transfer_Flow          = .true. ,   &Fluid_Properties  Heat_Transfer_Flow          = .true. ,
                      Reference_Dynamic_Viscosity = 1.84D-05 ,                      Reference_Dynamic_Viscosity = 1.84D-05 ,
Ligne 49: Ligne 52:
 ==== Incompressible two phase flows  ==== ==== Incompressible two phase flows  ====
 ----- -----
- +<WRAP info> 
-No heat transfer.\\+No heat transfer is considered at present.\\
 The physical properties of each fluid are constant.\\ The physical properties of each fluid are constant.\\
 +Two-phase flow simulations are performed with a level approach.\\ 
 +The simulations are restricted to enclosed domains at present.\\ 
 +</WRAP>
   &Fluid_Properties  Incomp_MultiFluids= .true. ,   &Fluid_Properties  Incomp_MultiFluids= .true. ,
                      Reference_Dynamic_Viscosity   = 1.84D-05 ,                      Reference_Dynamic_Viscosity   = 1.84D-05 ,
Ligne 64: Ligne 69:
 ==== Low Mach-number Flows ==== ==== Low Mach-number Flows ====
 ----- -----
 +<WRAP info>
 The fluid is a perfect gas.\\ The fluid is a perfect gas.\\
 +Heat transfer and multi-component gas can be considered.\\ 
 +Physical properties can be considered constant or dependent of gas mixture and temperature.\\ 
 +The dependence of the heat capacity is considered only in the case of multi-component gas flows. Otherwise it is constant.\\ 
 +</WRAP>
  
 ===  Example of flow with heat transfer === ===  Example of flow with heat transfer ===
 +<note>
 One species only (or homogenous species gas). \\  One species only (or homogenous species gas). \\ 
 The viscosity and the thermal conductivity depend on the Sutherland's law.\\ The viscosity and the thermal conductivity depend on the Sutherland's law.\\
 When the buoyancy/gravity force is considered, it is directly related to the density variation. When the buoyancy/gravity force is considered, it is directly related to the density variation.
 +</note>
   &Fluid_Properties  Variable_Density             = .true.   ,   &Fluid_Properties  Variable_Density             = .true.   ,
                      Heat_Transfer_Flow           = .true. ,                      Heat_Transfer_Flow           = .true. ,
Ligne 88: Ligne 96:
 The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$), the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas. \\ The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$), the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas. \\
 In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\ In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\
-If gravity/buoyancy effects must be considered, they are directly bounded to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>+If gravity/buoyancy effects must be considered, they are directly connected to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>
                                            
 === Multi-species flows === === Multi-species flows ===
 +<note>
 Heat transfer is activated.\\ Heat transfer is activated.\\
 Multi-species component gas .\\ Multi-species component gas .\\
 Physical properties depend on the gas components.\\ Physical properties depend on the gas components.\\
 When the buoyancy/gravity force is considered, it is directly related to the density variation. When the buoyancy/gravity force is considered, it is directly related to the density variation.
 +</note>
    &Fluid_Properties Variable_Density             = .true.   ,    &Fluid_Properties Variable_Density             = .true.   ,
                      Heat_Transfer_Flow           = .true. ,                      Heat_Transfer_Flow           = .true. ,
Ligne 114: Ligne 122:
                                            
                                            
-<note important>The reference values must be compatible each others (bounded by the law of perfect gas).\\ +<note important>The reference values must be compatible each others (by means of law of perfect gas).\\ 
 In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formulations coming from the kinetic theory of gas.\\ In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formulations coming from the kinetic theory of gas.\\
-The gas properties bounded to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>+The gas properties associated to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>
sunfluidh/fluid_properties_examples.1479462906.txt.gz · Dernière modification : 2016/11/18 10:55 de yann

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki