Outils pour utilisateurs

Outils du site


sunfluidh:fluid_properties_examples

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
sunfluidh:fluid_properties_examples [2016/11/18 11:27] yannsunfluidh:fluid_properties_examples [2016/11/29 14:58] (Version actuelle) yann
Ligne 1: Ligne 1:
-==== Examples of data set related to the namelist "Fluid_Properties"====+===== Examples of data set  =====
  
-The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ +The user finds here some examples illustrating different configurations related to the namelist [[sunfluidh:fluid_properties_namelist| "Fluid_Properties"]]. \\ 
-Data values are showed for equations used in dimensional form.\\+The data initialized by default, and not explicitly required, are generally not present for a sake of clarity.\\ 
 +Data values are showed for equations used in dimensional form.\\
  
 ----- -----
Ligne 14: Ligne 15:
 The gravity or buoyancy effects are related to the temperature variation only.\\ The gravity or buoyancy effects are related to the temperature variation only.\\
 </WRAP> </WRAP>
-=== Isotherm flows ===+=== Isothermal flows ===
  
    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,    &Fluid_Properties  Reference_Dynamic_Viscosity = 1.84D-05 ,
                       Reference_Density           = 1.2058789  /                       Reference_Density           = 1.2058789  /
  
-=== Example of isothermal and axisymmetrical flows ===+=== Example of axisymmetrical flows ===
  
   &Fluid_Properties  Axisymmetric_Case_3D_Enabled= .true. ,   &Fluid_Properties  Axisymmetric_Case_3D_Enabled= .true. ,
Ligne 25: Ligne 26:
                      Reference_Density           = 1.20    /                      Reference_Density           = 1.20    /
  
-<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] ).</note>+<note important> In this case, do not forget to define the domain in cylindrical geometry (see the Namelist [[sunfluidh:domain_features_namelist| "Domain_Features"]] .</note>
  
  
Ligne 51: Ligne 52:
 ==== Incompressible two phase flows  ==== ==== Incompressible two phase flows  ====
 ----- -----
-<note>+<WRAP info>
 No heat transfer is considered at present.\\ No heat transfer is considered at present.\\
 The physical properties of each fluid are constant.\\ The physical properties of each fluid are constant.\\
-</note>+Two-phase flow simulations are performed with a level approach.\\ 
 +The simulations are restricted to enclosed domains at present.\\ 
 +</WRAP>
   &Fluid_Properties  Incomp_MultiFluids= .true. ,   &Fluid_Properties  Incomp_MultiFluids= .true. ,
                      Reference_Dynamic_Viscosity   = 1.84D-05 ,                      Reference_Dynamic_Viscosity   = 1.84D-05 ,
Ligne 93: Ligne 96:
 The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$), the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas. \\ The heat capacity is calculated from the constant of perfect gas ($R=8.3144598 J.mol^{-1}.K^{-1}$), the "Heat_Capacity_Ratio" and the "Molecular_Mass " of the gas. \\
 In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\ In the dimensionless form, the specific gas constant is generally equal to unity and the heat capacity is $C_p= \frac{\gamma}{\gamma -1}$. The reference value of the molecular mass must be set to the constant of perfect gas $R$.\\
-If gravity/buoyancy effects must be considered, they are directly bounded to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>+If gravity/buoyancy effects must be considered, they are directly connected to the density variation. The variable "Thermal_Heat_Expansion" can be omitted and the gravity source term can be defined in the namelist [[sunfluidh:gravity_namelist| "Gravity"]].</note>
                                            
 === Multi-species flows === === Multi-species flows ===
Ligne 119: Ligne 122:
                                            
                                            
-<note important>The reference values must be compatible each others (bounded by the law of perfect gas).\\ +<note important>The reference values must be compatible each others (by means of law of perfect gas).\\ 
 In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formulations coming from the kinetic theory of gas.\\ In this example, the physical properties are not constant depend on the gas mixture and the temperature. They are calculated in each cell for each time step by means of formulations coming from the kinetic theory of gas.\\
-The gas properties bounded to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>+The gas properties associated to each species are provided by the namelist [[sunfluidh:species_properties_namelist|"Species_Properties"]].</note>
sunfluidh/fluid_properties_examples.1479464876.txt.gz · Dernière modification : 2016/11/18 11:27 de yann

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki