
2024/03/08 10:43 1/4 Parallel computing : example of a 2D heated back facing step flow

Documentation du code de simulation numérique SUNFLUIDH - https://sunfluidh.lisn.upsaclay.fr/

Parallel computing : example of a 2D heated back facing
step flow

Here, the namelist “Domain_Features” related to the computational domain of our example is
completed with data for OpenMP or MPI computing.

For an OpenMP parallel computing

The variable “Number_OMP_Threads” must be added to the namelist and set to a value corresponding
to number of threads wanted.

 &Domain_Features Geometric_Layout = 0, !--- Option
value for a cartesian geometry
 Start_Coordinate_I_Direction = 0.0 , !--- Start
coordinate along the I-direction
 End_Coordinate_I_Direction = 12. , !--- End
coordinate along the I-direction
 Start_Coordinate_J_Direction = 0.0 , !--- Start
coordinate along the J-direction
 End_Coordinate_J_Direction = 2.0 , !--- End
coordinate along the J-direction
 Start_Coordinate_K_Direction = 0.00 , !--- Start
coordinate along the K-direction
 End_Coordinate_K_Direction = 0.00 , !--- End of
the domain along the K-direction
 Cells_Number_I_Direction = 384 , !--- Number
of cells along the I-direction (not counting the ghost cells)
 Cells_Number_J_Direction = 128 , !--- Number
of cells along the J-direction (not counting the ghost cells)
 Cells_Number_K_Direction = 1, !--- Number
of cells along the K-direction (not counting the ghost cells)
 Regular_Mesh = .true. , !--- The grid
is regular for any direction
 Number_OMP_Threads = 4 / !---
Computation performed by 4 threads

In this case, the code automatically split the loops associated to the computational
grid in parts along the last direction preferentially. Each part is linked to a thread.

For a MPI parallel computing

We must set the number of MPI processes used and describe how each MPI process is linked to a
specific subdomain. Two ways are possible :

Last
update:
2017/09/27
09:29

sunfluidh:sunfluidh_tuto1_parallel_config https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:sunfluidh_tuto1_parallel_config

https://sunfluidh.lisn.upsaclay.fr/ Printed on 2024/03/08 10:43

Using the MPI cartesian topology : the MPI processes are ordered as a regular cartesian grid on
which the domain is divided.
Using the MPI graph topology : The connections between MPI processes are not necessary
regular as for the the MPI cartesian topology. This allows the user to define more complex
domain decompositions in order to remove the solid parts of the physical domain out of the
computational domain.

For any MPI parallel computing, the mesh size data set is applied for each subdomain,
not the entire domain. In this way, the load balancing between MPI processes is better
ensured. Note that for irregular cell sizes, subdomain sizes can also differ even though
the subdomain cell number is identical.

Example for a MPI cartesian topology

We here consider 4 MPI processes, 2 along each direction. The cell size is the same as previously
reported.

 &Domain_Features Geometric_Layout = 0, !--- Option
value for a cartesian geometry
 Start_Coordinate_I_Direction = 0.0 , !--- Start
coordinate along the I-direction
 End_Coordinate_I_Direction = 12. , !--- End
coordinate along the I-direction
 Start_Coordinate_J_Direction = 0.0 , !--- Start
coordinate along the J-direction
 End_Coordinate_J_Direction = 2.0 , !--- End
coordinate along the J-direction
 Start_Coordinate_K_Direction = 0.00 , !--- Start
coordinate along the K-direction
 End_Coordinate_K_Direction = 0.00 , !--- End of
the domain along the K-direction
 Cells_Number_I_Direction = 192 , !--- Number
of cells along the I-direction (not counting the ghost cells)
 Cells_Number_J_Direction = 64 , !--- Number
of cells along the J-direction (not counting the ghost cells)
 Cells_Number_K_Direction = 1, !--- Number
of cells along the K-direction (not counting the ghost cells)
 Regular_Mesh = .true. , !--- The grid
is regular for any direction
 MPI_Cartesian_Topology = .true. , !--- MPI
cartesian topology enabled
 Total_Number_MPI_Processes = 4, !--- Total
number of MPI processes
 Max_Number_MPI_Proc_I_Direction= 2, !--- Number
of MPI processes along the I-direction
 Max_Number_MPI_Proc_J_Direction= 2, !--- Number

2024/03/08 10:43 3/4 Parallel computing : example of a 2D heated back facing step flow

Documentation du code de simulation numérique SUNFLUIDH - https://sunfluidh.lisn.upsaclay.fr/

of MPI processes along the J-direction
 Max_Number_MPI_Proc_K_Direction= 1 / !--- Number
of MPI processes along the K-direction

Example for a MPI graph topology

We here consider 48 MPI processes, 12 along the I-direction and 4 along the J-direction. The cell size
is the same as previously reported.
If we use the MPI cartesian topology, we notice that 4 MPI-processes are associated to the solid part
of the step. In this case, it is useful to use the MPI graph topology for excluding the 4 pointless
processes. The number of MPI processes is reduced from 48 to 44. The corresponding data setup is :

 &Domain_Features Geometric_Layout = 0, !--- Option
value for a cartesian geometry
 Start_Coordinate_I_Direction = 0.0 , !--- Start
coordinate along the I-direction
 End_Coordinate_I_Direction = 12. , !--- End
coordinate along the I-direction
 Start_Coordinate_J_Direction = 0.0 , !--- Start
coordinate along the J-direction
 End_Coordinate_J_Direction = 2.0 , !--- End
coordinate along the J-direction
 Start_Coordinate_K_Direction = 0.00 , !--- Start
coordinate along the K-direction
 End_Coordinate_K_Direction = 0.00 , !--- End of
the domain along the K-direction
 Cells_Number_I_Direction = 32 , !--- Number
of cells along the I-direction (not counting the ghost cells)
 Cells_Number_J_Direction = 32 , !--- Number
of cells along the J-direction (not counting the ghost cells)
 Cells_Number_K_Direction = 1, !--- Number
of cells along the K-direction (not counting the ghost cells)
 Regular_Mesh = .true. , !--- The grid
is regular for any direction
 MPI_Graphic_Topology = .true. , !--- MPI
graph topology enabled
 Total_Number_MPI_Processes = 44, !--- Total
number of MPI processes
 Max_Number_MPI_Proc_I_Direction= 12, !--- Maximum
number of MPI processes along the I-direction
 Max_Number_MPI_Proc_J_Direction= 4, !--- Maximum
number of MPI processes along the J-direction
 Max_Number_MPI_Proc_K_Direction= 1 / !--- Maximum
number of MPI processes along the K-direction

Note that the product of “Maximum number of MPI processes” per direction
corresponds to the number of total MPI processes that would be used in MPI
cartesian topolgy.

Last
update:
2017/09/27
09:29

sunfluidh:sunfluidh_tuto1_parallel_config https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:sunfluidh_tuto1_parallel_config

https://sunfluidh.lisn.upsaclay.fr/ Printed on 2024/03/08 10:43

Using the MPI graph topology is not so easy. The information about the
connection between the MPI processes must be provided to the code
SUNFLUIDH. In other words, this file explains how is defined the spatial
distribution of subdomains. This information is contained in a data file named
“data_mpi_subdomain_layout.dat” (described hereafter).

Description of the file “data_mpi_subdomain_layout.dat”

This ASCII file must be read by the code SUNFLUIDH to get information on the MPI process connection
when the MPI graph topology is used. In our example it reads as :

 44 Number of enabled process
 -
 01 MPI K-plane :
 -
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 1 1 1

The file provides a map of enabled processes (1) and disabled processes (0) in regard to the
maximum number of MPI processes that will be used in MPI cartesian topology (here 48). This map is
defined for each plan of MPI processes along the K-direction given by the variable
“Max_Number_MPI_Proc_K_Direction”(here 1).
This file can be automatically created by using the homemade software
“mpi_subdomain_decomposition”. It analyses the sunfluidh data file initially defined for a MPI
cartesian topology and provides the output file “data_mpi_subdomain_layout.dat”. Click here for more
details.

From:
https://sunfluidh.lisn.upsaclay.fr/ - Documentation du code de simulation numérique
SUNFLUIDH

Permanent link:
https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:sunfluidh_tuto1_parallel_config

Last update: 2017/09/27 09:29

https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:domain_features_examples
https://sunfluidh.lisn.upsaclay.fr/
https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:sunfluidh_tuto1_parallel_config

	[Parallel computing : example of a 2D heated back facing step flow]
	Parallel computing : example of a 2D heated back facing step flow
	For an OpenMP parallel computing
	For a MPI parallel computing
	Example for a MPI cartesian topology
	Example for a MPI graph topology

