Outils pour utilisateurs

Outils du site


sunfluidh:radiative_heat_transfer_dom_setup_namelist

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
sunfluidh:radiative_heat_transfer_dom_setup_namelist [2016/12/13 12:58] – [VolRadcoeff] cadetsunfluidh:radiative_heat_transfer_dom_setup_namelist [2016/12/14 18:42] (Version actuelle) – [Namelist Radiative_Heat_Transfer_DOM] cadet
Ligne 2: Ligne 2:
  
 __** Not for the release SUNFLUIDH_EDU**__ .\\ __** Not for the release SUNFLUIDH_EDU**__ .\\
-This data set is used to define the radiative problem. Otherwise, it can be omitted. +This data set is used to define the radiative problem. Otherwise, it can be omitted.\\ 
-This module considers the Radiative Transfer Equation (RTE) for an emitting-absorbing non-scattering medium enclosed by difuse boundaries. +This module considers the Radiative Transfer Equation (RTE) for an emitting-absorbing non-scattering medium enclosed by diffuse boundaries. 
-To take into account the gas behavior, it considers both gray-gas assumption as well as real gas behavior through the Spectral-Line-Weighted-Sum-of-Gray-Gases (SLW) model. The final RTE-SLW problem is then discretize with the Discrete Ordinates Method (DOM).+To take into account the gas behavior, it considers both gray-gas assumption as well as real gas behavior through the Spectral-Line-Weighted-Sum-of-Gray-Gases (SLW) model. \\ 
 +The final RTE-SLW problem is then discretize with the Discrete Ordinates Method (DOM).
  
 **The DOM** discretize the $4\pi$ steradians integration in a set of $M$ discrete directions represented by their direct cosines and corresponding weights $\vec{q_m} = (\vec{s_m},\omega_m) = (\mu_m,\eta_m,\xi_m,\omega_m)$ for all $m \in [1,M]$.\\ **The DOM** discretize the $4\pi$ steradians integration in a set of $M$ discrete directions represented by their direct cosines and corresponding weights $\vec{q_m} = (\vec{s_m},\omega_m) = (\mu_m,\eta_m,\xi_m,\omega_m)$ for all $m \in [1,M]$.\\
Ligne 11: Ligne 12:
 Thus, the resulting **RTE-SLW-DOM** problem for emitting-absorbing non-scattering medium stands as below : Thus, the resulting **RTE-SLW-DOM** problem for emitting-absorbing non-scattering medium stands as below :
  
-$\vec{s}_m \cdot \nabla I_j^m (x_i,\vec{s}_m) = \kappa_j \left[ a_j I_b({T}(x_i)) - I_j^m(x_i,\vec{s}_m) \right]$     $; \quad \forall (m,j) \in [M,N_g]$+\begin{equation} 
 +\vec{s}_m \cdot \nabla I_j^m (x_i,\vec{s}_m) = \kappa_j \left[ a_j I_b({T}(x_i)) - I_j^m(x_i,\vec{s}_m) \right]; \quad \forall (m,j) \in [M,N_g] 
 +\end{equation}
  
 where $I_j^m$ is the radiative intensity for the virtual gray-gas $j$ in direction $m$ and $I_b$ is the blackbody radiative intensity. where $I_j^m$ is the radiative intensity for the virtual gray-gas $j$ in direction $m$ and $I_b$ is the blackbody radiative intensity.
Ligne 20: Ligne 23:
 The **dimensional** radiative source term $S_r$ and boundary net radiative heat flux $q_r^{net}$ are defined as : The **dimensional** radiative source term $S_r$ and boundary net radiative heat flux $q_r^{net}$ are defined as :
  
-$S_r(x_i,{T}) = - \sum_{j=0}^{N_g} \kappa_j \left[ \sum_{m=1}^{M} \omega_m I_j^m (x_i,\vec{s}_m)  - 4 a_j \sigma_B ({T}(x_i))^4 \right] $ 
  
-${q}_r^{net}(x_i^{wall}) = \varepsilon_{wall} \left[ \sigma_B ({T}(x_i^{wall}))^4 - \sum_{j=0}^{N_g} \sum_{m:\vec{s}_m \cdot \vec{n} > 0} \omega_m |\vec{s}_m\cdot \vec{n}| I_j^m (x_i^{wall},\vec{s}_m) \right]$+\begin{eqnarray} 
 +S_r(x_i,{T}) & = & - \sum_{j=0}^{N_g} \kappa_j \left[ \sum_{m=1}^{M} \omega_m I_j^m (x_i,\vec{s}_m)  - 4 a_j \sigma_B ({T}(x_i))^4 \right] \\ 
 +{q}_r^{net}(x_i^{wall}) \varepsilon_{wall} \left[ \sigma_B ({T}(x_i^{wall}))^4 - \sum_{j=0}^{N_g} \sum_{m:\vec{s}_m \cdot \vec{n} > 0} \omega_m |\vec{s}_m\cdot \vec{n}| I_j^m (x_i^{wall},\vec{s}_m) \right] 
 +\end{eqnarray}
  
 where $\sigma_b$ is the Stefan-Boltzmann constant, $\varepsilon$ is the boundary emissivity and $\vec{n}$ is the normal to the wall pointing out of the domain. where $\sigma_b$ is the Stefan-Boltzmann constant, $\varepsilon$ is the boundary emissivity and $\vec{n}$ is the normal to the wall pointing out of the domain.
  
  
-<note warning>This radiative solver implementation considers only **3D cartesian** problems under **MPI cartesian domain decomposition** approach.</note>+<note warning>This radiative solver implementation considers only **cartesian** problems and **does not support immersed bodies**.</note>
 ===== Full data set of the namelist ===== ===== Full data set of the namelist =====
  
Ligne 38: Ligne 43:
  
 ----- -----
-===== Definition of the data set for the RTE problem =====+===== Definition of the data set for the DOM-RTE problem =====
 ----- -----
 ==== activateRadiation ==== ==== activateRadiation ====
Ligne 98: Ligne 103:
    * Boundaries emissivities $\varepsilon$ sorted as (x-,x+,y-,y+,z-,z+).    * Boundaries emissivities $\varepsilon$ sorted as (x-,x+,y-,y+,z-,z+).
    * Default values = 0.0 0.0 0.0 0.0 0.0 0.0    * Default values = 0.0 0.0 0.0 0.0 0.0 0.0
------+
 ===== Definition of the data set for the SLW model ===== ===== Definition of the data set for the SLW model =====
 ----- -----
Ligne 116: Ligne 121:
      * NbGas $\ge$ 2  : SLW model is employed      * NbGas $\ge$ 2  : SLW model is employed
    * Default value = 1    * Default value = 1
 +
 +<note> Setting **NbGas $=$ 1 and ka_min = 0** is equivalent to **wall-to-wall radiation** du to the presence of transparent medium </note>
 ==== ka_min , ka_max ==== ==== ka_min , ka_max ====
    * Type : Real values    * Type : Real values
sunfluidh/radiative_heat_transfer_dom_setup_namelist.1481630301.txt.gz · Dernière modification : 2016/12/13 12:58 de cadet

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki