Table des matières
Namelist "Radiative_Heat_Transfer_DOM"
Not for the release SUNFLUIDH_EDU .
This data set is used to define the radiative problem. Otherwise, it can be omitted.
This module considers the Radiative Transfer Equation (RTE) for an emitting-absorbing non-scattering medium enclosed by diffuse boundaries.
To take into account the gas behavior, it considers both gray-gas assumption as well as real gas behavior through the Spectral-Line-Weighted-Sum-of-Gray-Gases (SLW) model.
The final RTE-SLW problem is then discretize with the Discrete Ordinates Method (DOM).
The DOM discretize the $4\pi$ steradians integration in a set of $M$ discrete directions represented by their direct cosines and corresponding weights $\vec{q_m} = (\vec{s_m},\omega_m) = (\mu_m,\eta_m,\xi_m,\omega_m)$ for all $m \in [1,M]$.
The SLW model will change the spectral integration in a weighted sum of $N_g$ gray-gases represented by their absorption coefficient and corresponding weights $(\kappa_j,a_j)$ for all $j \in [1,N_g]$.
Thus, the resulting RTE-SLW-DOM problem for emitting-absorbing non-scattering medium stands as below :
\begin{equation} \vec{s}_m \cdot \nabla I_j^m (x_i,\vec{s}_m) = \kappa_j \left[ a_j I_b({T}(x_i)) - I_j^m(x_i,\vec{s}_m) \right]; \quad \forall (m,j) \in [M,N_g] \end{equation}
where $I_j^m$ is the radiative intensity for the virtual gray-gas $j$ in direction $m$ and $I_b$ is the blackbody radiative intensity.
The dimensional radiative source term $S_r$ and boundary net radiative heat flux $q_r^{net}$ are defined as :
\begin{eqnarray} S_r(x_i,{T}) & = & - \sum_{j=0}^{N_g} \kappa_j \left[ \sum_{m=1}^{M} \omega_m I_j^m (x_i,\vec{s}_m) - 4 a_j \sigma_B ({T}(x_i))^4 \right] \\ {q}_r^{net}(x_i^{wall}) & = & \varepsilon_{wall} \left[ \sigma_B ({T}(x_i^{wall}))^4 - \sum_{j=0}^{N_g} \sum_{m:\vec{s}_m \cdot \vec{n} > 0} \omega_m |\vec{s}_m\cdot \vec{n}| I_j^m (x_i^{wall},\vec{s}_m) \right] \end{eqnarray}
where $\sigma_b$ is the Stefan-Boltzmann constant, $\varepsilon$ is the boundary emissivity and $\vec{n}$ is the normal to the wall pointing out of the domain.
Full data set of the namelist
&Radiative_Heat_Transfer_DOM activateRadiation = .false., RadiativePeriod = 1, FirstIterations = 20, RadiativeLocalIterations = 1, RadiativeConvergenceTolerance = 1.E-15, WallRadcoeff = 1.0 , VolRadCoeff = 1.0, RadiativeScheme = "STEP", ActivateGas = .false., NbGas = 1, ka_max = 0.0, ka_min = 0.0, Pref = 101325.0, Tref = 300., Href = 1, speca = "H2O", xaref = 0.07, xaUniform = 0.07, SQuad = 8, WallEmissivity = 0.0 0.0 0.0 0.0 0.0 0.0 /
Definition of the data set for the DOM-RTE problem
activateRadiation
- Type : Boolean value
- This option activates the radiative module.
- .false. : no radiation considered
- .true. : radiation problem is considered
- Default value = .false.
RadiativePeriod
- Type : Integer value
- This option set the periodicity of resolution of the Radiative problem in time iteration.
- Default value = 1
FirstIterations
- Type : Integer value
- In the case that no restart fields are available (start radiation from scratch), the solver will iterates “FirstIterations” times before entering the time loop.
- Default value = 20
RadiativeLocalIterations
- Type : Integer value
- Number of sub-iteration for the RTE solving at each radiative iteration.
- Default value = 1
RadiativeConvergenceTolerance
- Type : Real value
- Convergence criteria on the wall Fluxes and radiative source term for the sub-iteration.
- Default value = 1.E-15
WallRadcoeff
- Type : Real value
- Prescaler on the net radiative heat flux $q_r^{net}$ at walls.
- For debugging only.
- Default value = 1.0
VolRadcoeff
- Type : Real value
- Prescaler on the radiative source term $S_r$.
- For debugging only.
- Default value = 1.0
RadiativeScheme
- Type : Character string with a maximum size of 20
- Name of the interpolation scheme used in the Discrete Ordinates Method.
- Available values :
- “STEP” : first order interpolation scheme (robust)
- “DIAMOND” : second order centered interpolation scheme (could lead to negative intensity)
- “LATHROP” : second order interpolation scheme with limiter (time-consuming)
- Default value = “STEP”
SQuad
- Type : Integer value.
- Order N of the level symmetric angular quadrature ($S_N$)
- This quadrature leads to $M = (N+2)\times N$ directions in volume and half at boundaries
- Available values are 2, 4, 6, 8, 10, 12, 14
- Default value = 8
Tref
- Type : Real value.
- Reference temperature $T_{ref}$ in [$K$].
- Default value = Fluid_Properties%Reference_Temperature
Href
- Type : Real value.
- Reference Length $H_{ref}$ in [$m$].
- Default value = Nondimensionalization%Reference_Length
WallEmissivity
- Type : Real array of size 6.
- Boundaries emissivities $\varepsilon$ sorted as (x-,x+,y-,y+,z-,z+).
- Default values = 0.0 0.0 0.0 0.0 0.0 0.0
Definition of the data set for the SLW model
activateGas
- Type : Boolean value
- This option activates the SLW module.
- .false. : transparent medium under gray-gas assumption is considered (i.e. $\kappa = 0$)
- .true. : Gas absorption and emission is considered
- Default value = .false.
NbGas
- Type : Integer value
- This option sets the number of weighted gray-gases $N_g$ used in the SLW model.
- NbGas $=$ 1 : gray-gas assumption with $\kappa$ = ka_min
- NbGas $\ge$ 2 : SLW model is employed
- Default value = 1
ka_min , ka_max
- Type : Real values
- These options set the lower and upper bounds of dimensional absorbing coefficient [$m^{-1}$] for the SLW model.
- if NbGas $=$ 1 : $\kappa$ = ka_min, ka_max is useless
- if NbGas $\ge$ 2 : ka_min < $\kappa_j$ < ka_max for all $j \in [1,N_g]$
- Default value = [ ka_min , ka_max ] = [ 0.0 , 0.0 ]
SPECA
- Type : Character string with a maximum size of 3
- Name of the absorbing species when NbGas $\ge$ 2 (SLW model).
- if “NbGas” $=$ 1 : useless
- Available values :
- “H2O” : $air-H_2O$ mixture
- “CO2” : $air-CO_2$ mixture
- Default value = “H2O”
xaref
- Type : Real value
- This option set the reference molar fraction $x_{ref}$ of the absorbing species for the SLW model.
- if “NbGas” $=$ 1 : useless
- Default value = 0.07
xaUniform
- Type : Real value
- As long as the SLW model is not coupled with species equations, this option set a uniform molar fraction $x_{a}$ of the absorbing species in the overall domain.
- if NbGas $=$ 1 : useless
- Default value = 0.07
Pref
- Type : Real value.
- Reference pressure $P_{ref}$ in [$Pa$].
- if “NbGas” $=$ 1 : useless
- Default value = obtained from Fluid_Properties quantities