Documentation du code de simulation numérique SUNFLUIDH

Outils du site

input3d.dat
===========================================================================
===========================================================================
MAIN INPUT DATA FILE : 3D HEAT-DRIVEN CAVITY FLOW PROBLEM
IN DIMENSIONAL UNITS
COUPLED WITH WALL AND GAS RADIATION
===========================================================================
===========================================================================

__________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 )
/
_______________/_____
/              /     /|
/              /     / |
/                    /  |
/                    /   |  _____________  COLD ( Tc )
/                    /    | /
HOT (Th)/____________________/     |/
______  |                    |     /
\ |                    |    /|
\|                    |     |
|                    |     |
|                    |     /
|                    |    /
|                    |   /
|                    |  /
|      \             | /
|_______\____________|/
\
\__________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 )

K
^
|   J                   |
|  /                    | gravity ( g =9.81 m.s-2)
| /                     |
|/                     _|_
---------> I          \_/

DESIRED CONFIGURATION :
+ CASE B from (Soucasse et al. 2012)
- Ra = 1.D+06
- Pr = 0.707
- T0 = 300 K
- P0 = 101325 Pa
- Uniform molar fraction of H2O = 0.02

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
GENERAL LAYOUT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
&Version File_Version="VERSION2.0"/
===========================================================================
FLUID PROPERTIES
===========================================================================
INCOMPRESSIBLE FLUID FLOW 	--> Constant Density
HEAT DRIVEN FLOW 		--> Activation of Heat Transfer
BOUSSINESQ ASSUMPTION		--> Thermal Expansion Coefficient = 1/T0 ( here beta = 0 ==> beta = 1/T0 )

&Fluid_Properties  	Variable_Density    = .false.   , Constant_Mass_Flow  = .true. , Heat_Transfer_Flow = .true.  ,
Heat_Capacity_Ratio = 1.4  , Reference_Density= 1.225, Reference_Dynamic_Viscosity= 1.852D-05,
Reference_Temperature= 300.0  , Prandtl = 0.707, Reference_Heat_Capacity = 1004.D0 , Thermal_Expansion_coefficient = 0.0/

===========================================================================
INITIALIZATION OF THE VELOCITY COMPONENTS, THE TEMPERATURE AND SPECIES
===========================================================================
START FROM FLOW AT REST
AND UNIFORM TEMPERATURE at T0 = 300 K

&Velocity_Initialization	I_Velocity_Reference_Value = 0.0  , J_Velocity_Reference_Value = 0.0  , K_Velocity_Reference_Value = 0.0 ,
Initial_Field_Option_For_Velocity_I = 0, Initial_Field_Option_For_Velocity_J = 0 , Initial_Field_Option_For_Velocity_K = 0/

&Temperature_Initialization 	Temperature_Reference_Value = 300.0, Initial_Field_Option_For_Temperature = 0 /

===========================================================================
GRAVITY
===========================================================================
FORCE GRAVITY ALONG THE VERTICAL AXIS POINTING DOWNWARD ( i.e. gravity = -g.\vec{z} )
CONSIDERING DIMENSIONAL PARAMETER g = 9.81 m/s^2

&Gravity  Gravity_Enabled= .true. , Gravity_Angle_IJ= 90.0  , Gravity_Angle_IK= 0.0 , Reference_Gravity_Constant= 9.81 /

===========================================================================
===========================================================================
- ACTIVATE THE RADIATIVE SOLVER [default = .false.] ( ONLY FOR 3D CARTESIAN PROBLEMS !! )
- SOLVE THE RADIATIVE PROBLEM EVERY 5 CONVECTIVE TIMESTEP ( LIMIT TIME CONSUMPTION , KEEP THIS PARAMETER LOWER THAN 5~8 FOR STABILITY ... ) [default = 1]
- IF STARTED FROM SCRATCH, FORCE THE SOLVER TO ITERATE OVER FirstIterations=200 LOCAL ITERATIONS FOR INCIDENT FLUXES CONVERGENCES
AT WALLS AND VOLUMIC RADIATIVE SOURCE TERM [default = 20]
ERROR IS REACHED [default = 1.E-15]
- WallRadCoeff AND VolRadCoeff ARE FOR DEVELOPPEMENT ONLY ... [default = 1]
- CONSIDER THE "LATHROP" SCHEME TO INTERPOLATE THE CELL-FACES RADIATIVE INTENSITY [default = STEP]
- CONSIDER THE ANGULAR DISCRETISATION WITH S10 LEVEL SYMMETRIC QUADRATURES SQuad = 10 ( 120 DIRECTIONS IN VOLUMES, 60 DIRECTIONS ON WALLS) [default = 8]
- CONSIDER BLACK WALLS ON DIRICHLET WALLS AND REFLECTIVE WALLS ON THE OTHERS [default = 0.1]
- CONSIDER THE MEDIUM AS A REAL GAS MIXTURE :
+ ACTIVATE THE SLW MODEL ActivateGas=.true. [default = .false.]
+ SPLIT THE ABSOPTION COEFFICIENT DOMAIN IN 8 WEIGHTED SUM OF GRAY-GASES NbGas = 8 [default = 1]
+ ka_min AND ka_max REPRESENTS THE MININUM AND MAXIMUM RANGE OF THE ABSORPTION COEFFICIENT DOMAIN in m^{-1} [default = 0]
+ CONSIDERS THE MEDIUM AS AN AIR-H2O GAS MIXTURE WITH UNIFORM MOLAR FRACTION x = 0.02 [default = 0.07]

ActivateGas=.true., NbGas = 8, ka_max=570., ka_min=6.3e-07,
Pref=101325.0, Href = 1.0, speca='H2O',xaref=0.02, xaUniform=0.02,
SQuad = 10, WallEmissivity = 1.0 1.0 0.0 0.0 0.0 0.0 /

===========================================================================
DOMAIN FEATURES
===========================================================================
- CONSIDER HERE A CUBICAL CAVITY WITH WALL REFINED CELLS GIVEN IN SEPARATE MESH FILES
- WE CONSIDERS AN MPI DOMAIN DECOMPOSITION PROBLEM ON 2x2x3 MPI PROCESSES

&Domain_Features Start_Coordinate_I_Direction= 0.00 , End_Coordinate_I_Direction= 1.00,
Start_Coordinate_J_Direction= 0.00 , End_Coordinate_J_Direction= 1.00,
Start_Coordinate_K_Direction= 0.00 , End_Coordinate_K_Direction= 1.00,
Cells_Number_I_Direction= 40 ,Cells_Number_J_Direction= 40 ,Cells_Number_K_Direction= 30,
MPI_Cartesian_Topology= .true. ,
Total_Number_MPI_Processes= 12,
Max_Number_MPI_Proc_I_Direction= 2 , Max_Number_MPI_Proc_J_Direction= 2, Max_Number_MPI_Proc_K_Direction= 3,
Regular_Mesh= .false. /

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DEFINITION OF BOUNDARY CONDITIONS
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=============================================================================
WALL BOUNDARY CONDITION SETUP
=============================================================================
- WE CONSIDER DIRICHLET TEMPERATURE CONDITION ON HOT AND COLD WALLS (Heat_BC_Option = 0)
- AND WALL CONVECTION-RADIATION COUPLING AT THE OTHER WALLS (Heat_BC_Option = 5)

&Heat_Wall_Boundary_Condition_Setup
Wall_BC_DataSetName ="Set1",
West_Heat_BC_Option = 0 , East_Heat_BC_Option = 0 ,  Back_Heat_BC_Option = 5 ,  Front_Heat_BC_Option = 5 , South_Heat_BC_Option = 5 , North_Heat_BC_Option = 5,
West_Wall_BC_Value= 300.005 , East_Wall_BC_Value= 299.995 , Back_Wall_BC_Value= 0.0 , Front_Wall_BC_Value= 0.0 , South_Wall_BC_Value= 0.0 , North_Wall_BC_Value= 0.0 /

=============================================================================
BORDER BOUNDARY CONDITIONS
=============================================================================
!--- No new boundary conditions are defined at the ends of the domain : walls by default are preserved, the inlet and outlet previously are defined above)
!--- As "None" is the default setting for this namelist, it can be removed

&Border_Domain_Boundary_Conditions West_BC_Name= "None" , East_BC_Name= "None" , Back_BC_Name= "None" , Front_BC_Name= "None" , North_BC_Name= "None" , South_BC_Name= "None" /
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
NUMERICAL METHODS
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PARTIAL DIAGONALISATION TECHNIQUE IS EMPLOYED FOR THE POISSON PROBLEM ==>  Numerical_Method_Poisson_Equation   = 3

&Numerical_Methods  NS_NumericalMethod= "BDF2-SchemeO2"                    ,       !--- BDF2 + 2nd order centered scheme
MomentumConvection_Scheme="Centered-O2-Conservative"   ,       !--- conservative form for solving the velocity (momentum) equation
TemperatureAdvection_Scheme="Centered-O2-Conservative",       !--- conservative form for solving the temperature (enthalpy) equation
Poisson_NumericalMethod="Home-PartialDiagonalization"  /       !--- Partial Diagonalization for Poisson's equation
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
SIMULATION MANAGEMENT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- START FROM SCRATCH IF Restart_Parameter= 0 OR FROM EXISTING FILES IF Restart_Parameter= 3
- WE CONSIDERS THAT THE PROBLEM WILL REACH A STEADY STATE AND WILL EVOLVE IN TIME WITH FIXED CFL PARAMETER

&Simulation_Management    Restart_Parameter= 3 ,
Temporal_Iterations_Number = 100 , Final_Time = 3.D+04  ,
TimeStep_Type = 1 ,
CFL_Min      = 0.3 , CFL_Max      = 0.3 ,
Timestep_Min = 1.D-03   , Timestep_Max = 1.D+01 ,
Iterations_For_Timestep_Linear_Progress= 1,
Probe_Recording_Rate                   = 1000     ,
Simulation_Backup_Rate                 = 5000   , Simulation_Checking_Rate = 20 /

=============================================================================
PROBES MANAGEMENT
=============================================================================
=============================================================================
FIELDS RECORDING SETUP
=============================================================================
&Field_Recording_Setup     Check_Special_Features= "NOHeat_Driven_Cavity_Flow" /

&Simulation_Management
InstantaneousFields_RecordingReset=.false.     ,
InstantaneousFields_TimeRecordingRate= 5.0E+01 ,
InstantaneousFields_RecordingStartTime= 0.D-00  /
&Instantaneous_Fields_Listing  Name_of_Field = "U     " /      First velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "V     " /      Second velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "W     " /      Third velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "T     " /      Temperature
&Instantaneous_Fields_Listing  Name_of_Field = "P     " /      Pressure
&Instantaneous_Fields_Listing  Name_of_Field = "divU  " /      Momentum divergence

END OF FILE