Outils pour utilisateurs

Outils du site


sunfluidh:3d_heat_driven_cavity_incomp_flow_gasrad
input3d.dat
===========================================================================
===========================================================================
            MAIN INPUT DATA FILE : 3D HEAT-DRIVEN CAVITY FLOW PROBLEM 
				   IN DIMENSIONAL UNITS
				   COUPLED WITH WALL AND GAS RADIATION
===========================================================================
===========================================================================
 
                               __________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 ) 
                              /
              _______________/_____
             /              /     /|
	    /              /     / |
           /                    /  |
	  /                    /   |  _____________  COLD ( Tc )
	 /                    /    | /
HOT (Th)/____________________/     |/ 
______  |                    |     / 
      \ |                    |    /| 
       \|                    |     |     
	|                    |     |
	|                    |     /
	|                    |    /
	|                    |   /
	|                    |  /
	|      \             | /
	|_______\____________|/
	         \
	          \__________________ ADIABATIC ( \lambda \nabla T \cdot \vec{n} + Q_{radiation} = 0 ) 
 
 
 
	K
	^
	|   J                   |
	|  /                    | gravity ( g =9.81 m.s-2)
	| /                     |
	|/                     _|_
	 ---------> I          \_/
 
	DESIRED CONFIGURATION : 
			+ CASE B from (Soucasse et al. 2012)
				- Ra = 1.D+06
				- Pr = 0.707
				- T0 = 300 K
				- P0 = 101325 Pa
				- Uniform molar fraction of H2O = 0.02
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                     GENERAL LAYOUT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
&Version File_Version="VERSION2.0"/
===========================================================================
                FLUID PROPERTIES
===========================================================================
 INCOMPRESSIBLE FLUID FLOW 	--> Constant Density
 HEAT DRIVEN FLOW 		--> Activation of Heat Transfer
 BOUSSINESQ ASSUMPTION		--> Thermal Expansion Coefficient = 1/T0 ( here beta = 0 ==> beta = 1/T0 )
 
&Fluid_Properties  	Variable_Density    = .false.   , Constant_Mass_Flow  = .true. , Heat_Transfer_Flow = .true.  ,
			Heat_Capacity_Ratio = 1.4  , Reference_Density= 1.225, Reference_Dynamic_Viscosity= 1.852D-05, 
			Reference_Temperature= 300.0  , Prandtl = 0.707, Reference_Heat_Capacity = 1004.D0 , Thermal_Expansion_coefficient = 0.0/
 
===========================================================================
   INITIALIZATION OF THE VELOCITY COMPONENTS, THE TEMPERATURE AND SPECIES
===========================================================================
 START FROM FLOW AT REST
 AND UNIFORM TEMPERATURE at T0 = 300 K
 
&Velocity_Initialization	I_Velocity_Reference_Value = 0.0  , J_Velocity_Reference_Value = 0.0  , K_Velocity_Reference_Value = 0.0 , 
				Initial_Field_Option_For_Velocity_I = 0, Initial_Field_Option_For_Velocity_J = 0 , Initial_Field_Option_For_Velocity_K = 0/
 
&Temperature_Initialization 	Temperature_Reference_Value = 300.0, Initial_Field_Option_For_Temperature = 0 /
 
===========================================================================
                GRAVITY 
===========================================================================
 FORCE GRAVITY ALONG THE VERTICAL AXIS POINTING DOWNWARD ( i.e. gravity = -g.\vec{z} )
 CONSIDERING DIMENSIONAL PARAMETER g = 9.81 m/s^2
 
&Gravity  Gravity_Enabled= .true. , Gravity_Angle_IJ= 90.0  , Gravity_Angle_IK= 0.0 , Reference_Gravity_Constant= 9.81 /
 
===========================================================================
                RADIATION 
===========================================================================
 AS RADIATION IS CONSIDERED :
 - ACTIVATE THE RADIATIVE SOLVER [default = .false.] ( ONLY FOR 3D CARTESIAN PROBLEMS !! )
 - SOLVE THE RADIATIVE PROBLEM EVERY 5 CONVECTIVE TIMESTEP ( LIMIT TIME CONSUMPTION , KEEP THIS PARAMETER LOWER THAN 5~8 FOR STABILITY ... ) [default = 1]
 - IF STARTED FROM SCRATCH, FORCE THE SOLVER TO ITERATE OVER FirstIterations=200 LOCAL ITERATIONS FOR INCIDENT FLUXES CONVERGENCES
   AT WALLS AND VOLUMIC RADIATIVE SOURCE TERM [default = 20]
 - FOR EACH RADIATIVE PROBLEM SOLVING STEPS, ITERATE OVER RadiativeLocalIterations=20 SUB-ITERATIONS OR UNTIL RadiativeConvergenceTolerance=5.E-05 RESIDUAL
   ERROR IS REACHED [default = 1.E-15]
 - WallRadCoeff AND VolRadCoeff ARE FOR DEVELOPPEMENT ONLY ... [default = 1]
 - CONSIDER THE "LATHROP" SCHEME TO INTERPOLATE THE CELL-FACES RADIATIVE INTENSITY [default = STEP]
 - CONSIDER THE ANGULAR DISCRETISATION WITH S10 LEVEL SYMMETRIC QUADRATURES SQuad = 10 ( 120 DIRECTIONS IN VOLUMES, 60 DIRECTIONS ON WALLS) [default = 8]
 - CONSIDER BLACK WALLS ON DIRICHLET WALLS AND REFLECTIVE WALLS ON THE OTHERS [default = 0.1]
 - CONSIDER THE MEDIUM AS A REAL GAS MIXTURE :
   + ACTIVATE THE SLW MODEL ActivateGas=.true. [default = .false.]
   + SPLIT THE ABSOPTION COEFFICIENT DOMAIN IN 8 WEIGHTED SUM OF GRAY-GASES NbGas = 8 [default = 1]
   + ka_min AND ka_max REPRESENTS THE MININUM AND MAXIMUM RANGE OF THE ABSORPTION COEFFICIENT DOMAIN in m^{-1} [default = 0]
   + CONSIDERS THE MEDIUM AS AN AIR-H2O GAS MIXTURE WITH UNIFORM MOLAR FRACTION x = 0.02 [default = 0.07]
 
&Radiative_Heat_Transfer_DOM  	activateRadiation=.true. , RadiativePeriod = 5, FirstIterations=200, 
				RadiativeLocalIterations=20, RadiativeConvergenceTolerance = 5.E-05,
				WallRadcoeff = 1.0 , VolRadCoeff = 1.0, RadiativeScheme = "LATHROP",
				ActivateGas=.true., NbGas = 8, ka_max=570., ka_min=6.3e-07,
				Pref=101325.0, Href = 1.0, speca='H2O',xaref=0.02, xaUniform=0.02,
				SQuad = 10, WallEmissivity = 1.0 1.0 0.0 0.0 0.0 0.0 /
 
===========================================================================
                    DOMAIN FEATURES
===========================================================================
 - CONSIDER HERE A CUBICAL CAVITY WITH WALL REFINED CELLS GIVEN IN SEPARATE MESH FILES
 - WE CONSIDERS AN MPI DOMAIN DECOMPOSITION PROBLEM ON 2x2x3 MPI PROCESSES
 
&Domain_Features Start_Coordinate_I_Direction= 0.00 , End_Coordinate_I_Direction= 1.00, 
                 Start_Coordinate_J_Direction= 0.00 , End_Coordinate_J_Direction= 1.00, 
                 Start_Coordinate_K_Direction= 0.00 , End_Coordinate_K_Direction= 1.00, 
                 Cells_Number_I_Direction= 40 ,Cells_Number_J_Direction= 40 ,Cells_Number_K_Direction= 30,
                 Number_OMP_Threads= 1,
                 MPI_Cartesian_Topology= .true. ,
                 Total_Number_MPI_Processes= 12,
                 Max_Number_MPI_Proc_I_Direction= 2 , Max_Number_MPI_Proc_J_Direction= 2, Max_Number_MPI_Proc_K_Direction= 3,
                 Regular_Mesh= .false. /
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
              DEFINITION OF BOUNDARY CONDITIONS
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=============================================================================
                 WALL BOUNDARY CONDITION SETUP 
=============================================================================
 - WE CONSIDER DIRICHLET TEMPERATURE CONDITION ON HOT AND COLD WALLS (Heat_BC_Option = 0)
 - AND WALL CONVECTION-RADIATION COUPLING AT THE OTHER WALLS (Heat_BC_Option = 5)
 
&Heat_Wall_Boundary_Condition_Setup 
      Wall_BC_DataSetName ="Set1",
      West_Heat_BC_Option = 0 , East_Heat_BC_Option = 0 ,  Back_Heat_BC_Option = 5 ,  Front_Heat_BC_Option = 5 , South_Heat_BC_Option = 5 , North_Heat_BC_Option = 5,
      West_Wall_BC_Value= 300.005 , East_Wall_BC_Value= 299.995 , Back_Wall_BC_Value= 0.0 , Front_Wall_BC_Value= 0.0 , South_Wall_BC_Value= 0.0 , North_Wall_BC_Value= 0.0 /
 
=============================================================================
               BORDER BOUNDARY CONDITIONS
=============================================================================
 !--- No new boundary conditions are defined at the ends of the domain : walls by default are preserved, the inlet and outlet previously are defined above)
!--- As "None" is the default setting for this namelist, it can be removed
 
&Border_Domain_Boundary_Conditions West_BC_Name= "None" , East_BC_Name= "None" , Back_BC_Name= "None" , Front_BC_Name= "None" , North_BC_Name= "None" , South_BC_Name= "None" /
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                   NUMERICAL METHODS
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 PARTIAL DIAGONALISATION TECHNIQUE IS EMPLOYED FOR THE POISSON PROBLEM ==>  Numerical_Method_Poisson_Equation   = 3
 
&Numerical_Methods  NS_NumericalMethod= "BDF2-SchemeO2"                    ,       !--- BDF2 + 2nd order centered scheme
                    MomentumConvection_Scheme="Centered-O2-Conservative"   ,       !--- conservative form for solving the velocity (momentum) equation
                    TemperatureAdvection_Scheme="Centered-O2-Conservative",       !--- conservative form for solving the temperature (enthalpy) equation
                    Poisson_NumericalMethod="Home-PartialDiagonalization"  /       !--- Partial Diagonalization for Poisson's equation
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                   SIMULATION MANAGEMENT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 - START FROM SCRATCH IF Restart_Parameter= 0 OR FROM EXISTING FILES IF Restart_Parameter= 3
 - WE CONSIDERS THAT THE PROBLEM WILL REACH A STEADY STATE AND WILL EVOLVE IN TIME WITH FIXED CFL PARAMETER
 
&Simulation_Management    Restart_Parameter= 3 , 
                          Steady_Flow_Stopping_Criterion_Enabled = .true. , Steady_Flow_Stopping_Criterion = 1.D-14, 
                          Temporal_Iterations_Number = 100 , Final_Time = 3.D+04  , 
                          TimeStep_Type = 1 ,
                          CFL_Min      = 0.3 , CFL_Max      = 0.3 , 
                          Timestep_Min = 1.D-03   , Timestep_Max = 1.D+01 ,
                          Iterations_For_Timestep_Linear_Progress= 1,
                          Probe_Recording_Rate                   = 1000     ,
                          Simulation_Backup_Rate                 = 5000   , Simulation_Checking_Rate = 20 /
 
=============================================================================
                   PROBES MANAGEMENT
=============================================================================
=============================================================================
           FIELDS RECORDING SETUP
=============================================================================
&Field_Recording_Setup     Check_Special_Features= "NOHeat_Driven_Cavity_Flow" /
 
&Simulation_Management
    InstantaneousFields_RecordingReset=.false.     ,       
    InstantaneousFields_TimeRecordingRate= 5.0E+01 ,
    InstantaneousFields_RecordingStartTime= 0.D-00  /
&Instantaneous_Fields_Listing  Name_of_Field = "U     " /      First velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "V     " /      Second velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "W     " /      Third velocity component
&Instantaneous_Fields_Listing  Name_of_Field = "T     " /      Temperature
&Instantaneous_Fields_Listing  Name_of_Field = "P     " /      Pressure
&Instantaneous_Fields_Listing  Name_of_Field = "divU  " /      Momentum divergence
 
 
END OF FILE
Traductions de cette page:
  • fr
sunfluidh/3d_heat_driven_cavity_incomp_flow_gasrad.txt · Dernière modification : 2019/11/13 16:30 de yann

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki